Sparse extreme learning machine classifier exploiting intrinsic graphs

نویسندگان

  • Alexandros Iosifidis
  • Anastasios Tefas
  • Ioannis Pitas
چکیده

This paper presents an analysis of the recently proposed sparse Extreme Learning Machine (S-ELM) classifier and describes an optimization scheme that can be used to calculate the network output weights. This optimization scheme exploits intrinsic graph structures in order to describe geometric data relationships in the so-called ELM space. Kernel formulations of the approach operating in ELM spaces of arbitrary dimensions are also provided. It is shown that the application of the optimization scheme exploiting geometric data relationships in the original ELM space is equivalent to the application of the original S-ELM to a transformed ELM space. The experimental results show that the incorporation of geometric data relationships in S-ELM can lead to enhanced performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method

Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...

متن کامل

Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...

متن کامل

Rice Classification and Quality Detection Based on Sparse Coding Technique

Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...

متن کامل

Revisiting the Vector Space Model: Sparse Weighted Nearest-Neighbor Method for Extreme Multi-Label Classification

Machine learning has played an important role in information retrieval (IR) in recent times. In search engines, for example, query keywords are accepted and documents are returned in order of relevance to the given query; this can be cast as a multi-label ranking problem in machine learning. Generally, the number of candidate documents is extremely large (from several thousand to several millio...

متن کامل

Exploiting Local Class Information in Extreme Learning Machine

In this paper we propose an algorithm for Single-hidden Layer Feedforward Neural networks training. Based on the observation that the learning process of such networks can be considered to be a non-linear mapping of the training data to a high-dimensional feature space, followed by a data projection process to a lowdimensional space where classification is performed by a linear classifier, we e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2015